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Abstract

This work presents a methodology for determining the interface between wetting and non-wetting
phases inside a three-dimensional (3D) porous space at a given equilibrium state. The work is limited to
the study of mechanical equilibrium. Mass transfer between di�erent phases is not considered. The
method is based on a 3D extension of the opening method from image analysis, applied on 3D
stochastically reconstructed porous microstructures. The advantage of the presently proposed
methodology with respect to percolation networks conception is that simplifying assumptions regarding
the geometry of the porous space are not required. In fact, invasion of wetting ¯uid into a real porous
structure in imbibition and wetting ¯uid retention at the later stages of drainage occur spatially through
a complex structure of corners and intrinsic irregularities of pore surfaces that are very di�cult to model
by using percolation networks. Simulation results were compared with experimental data related to
mercury intrusion and water±oil capillary curves for a Berea sandstone. # 1999 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The problem of predicting macroscopic transport properties from the underlying microscopic

structure and pore-scale physics has been the subject of extensive investigation in recent years.
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Retention and transfer of ¯uids in porous structures is, presently, conceived starting from two
basic conceptions. In the ®rst one, porous space is considered as a discrete set of constrictions
and cavities connected between themselves in a percolation network. In the second one, porous
structure is reconstructed in three dimensions by conserving the ®rst moments of the phase
function, trying to match more closely to the geometry of real media and enabling one to
create numerical realizations of the sample with the desired geometric properties. Advanced
techniques such as microtomography (Hazlett, 1995; Spanne et al., 1994) and serial sectioning
(Koplik et al., 1984; Kwiecien et al., 1990) could provide a detailed description of the 3D pore
structures of porous materials. These techniques are, however, of low resolution, expensive
and/or not readily available.
In the ®rst and, also, the oldest conception, microscopic models are frequently,

monodisperse models, based on random percolation networks of sites and/or bonds,
interacting between themselves in a single scale. Classically, sites are randomly distributed
in a network, with a constant or variable coordination number, which is the number of
sites that are neighbours of each site in the network, Philippi and Souza (1995). The size
of the bond connecting each two contiguous sites is randomly chosen so as to remain
smaller than the size of the connected sites. Several well-known problems are associated
with this reconstruction procedure: (i) it is very di�cult to choose a particular constant
coordination number Z for the porous structure or to ascertain a realistic distribution law
for this parameter, (ii) it is very di�cult to access the size distribution of constrictions and
(iii) for simplicity reasons, networks are frequently, spatially non-correlated. Mercury
intrusion and sorption isotherms have been used to estimate the size distribution of
constrictions (Chatzis and Dullien, 1982; DaiÈ an and Saliba, 1991). In general, several
parameters models are needed in this kind of work, which are adjusted to ®t the model to
experimental data. In fact, the introduction of bonds in the percolation system is,
frequently, a necessary hypothesis in percolation models, due to the lack of information
about the spatial distribution of pores. Chatzis and Dullien (1982) and DaiÈ an and Saliba
(1991) use a local correlation between throat size and pore size given by a relationship
between the cumulative distributions of throats and pores. Mayagoitia et al. (1989) have
also considered a local correlation between a site and the contiguous bond, generated by
the conditional probability related to the impossibility of connecting a site with a bond
greater in size. Spatially correlated networks of sites and bonds were considered, e.g., by
Renault (1991), to study the in¯uence of spatial correlation on the percolation threshold
and by Ioannids and Chatzis (1993a, 1993b) and Tsakiroglou and Payatakes (1992) to
study the e�ect of spatial correlation on mercury intrusion. In recent years pore bodies and
throats have been simulated using prisms of rectangular cross-section for describing wetting
¯uid corner invasion and the later stages of pore ®lling during drainage (Ioannidis and
Chatzis, 1993c). This kind of hypothesis, introduced by Lenormand (1981), is necessary for
correctly describing non-wetting ¯uid trapping, which is a fundamental physical process in
oil recovery technology.
The second and more recent conception has been developed following the introduction of

enhanced image analysis methods used over pictures of highly polished surfaces of porous
materials, taken with optical or electron scanning microscopes (Adler, 1992; Philippi et al.,
1994; Pieritz and Philippi, 1995; Laurent and Frendo-Rosso, 1992; Fernandes, 1994). The
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information on porous medium is obtained following a sequence of image analysis operations
consisting in image acquisition, segmentation and morphology analysis of the structure. Three-
dimensional reconstruction of the porous structure conserves, usually, the porosity and auto-
correlation function measured on a binary image obtained from these pictures. Joshi (1974),
Quiblier (1984), Adler et al. (1990) and Fernandes (1994) have extensively studied this
operation. This method has been applied to the prediction of important petrophysical and
reservoir engineering properties, such as permeability (Adler et al. 1990) and formation factor
(Ioannidis et al. 1995) with reasonable success. Thovert et al. (1993) used the reconstructed
porous media and developed thinning algorithms to obtain the graph of the 3D pore structure.
The topological characteristics were derived. Nowadays, results are restricted to single-phase
¯ow: the ¯ow problem is solved inside a known geometrical domain, which is the whole porous
space.
Recently, a photoluminescent volumetric imaging method, with a micronic spatial resolution,

was used by Montemagno and Gray (1995) to experimentally determine multiphase ¯uid
distributions in porous media. For simulating multiphase ¯ow inside a reconstructed porous
structure it is important to ®nd the geometrical regions occupied by the di�erent ¯uids inside
the porous space. Speci®cally, for two-phase ¯ow it is important to geometrically locate the
wetting and non-wetting phases inside the porous space at a given time.
Conceived as a dynamical problem, two-phase ¯uid invasion into a porous structure is

complicated due to the di�culty in predicting the location of the interface between the two
¯uids as it is the site of dynamical unstability sources, considering the competition between
inertial forces, surface tension and viscous transfer of momentum. In the present work, two-
phase ¯uid invasion is supposed to proceed following a sequence of quasi-static processes
between equilibrium states. The dynamic invasion problem is, thus, strongly simpli®ed and
reduced to the determination of the interface between the two ¯uids by using the well-known
Young±Laplace equation. In fact, Young±Laplace equation predicts a constant curvature for an
interface in mechanical equilibrium. The location of the interface can, thus, be regarded as a
geometrical problem.
The purpose of this work is to present a methodology for determining this interface,

considering two immiscible phases inside a 3D porous space, at a given equilibrium state. The
work is limited to the study of mechanical equilibrium: mass transfer between the phases
is not considered. The method is based on a 3D extension of the opening method from
image analysis. From the authors' knowledge, this idea was ®rstly used in the study of water
vapour sorption in two-dimensional porous sections by Quenard and Bentz (1992), although
Del®ner et al. (1972) were the ®rst to propose the use of opening methods, in the simulation of
mercury intrusion. Recently, Yao et al. (1997) have used this method for studying mercury
intrusion into 3D porous structures reconstructed from the data obtained from Vosges
sandstone.
The great advantage of the presently proposed methodology with respect to percolation

networks conception that simplifying assumptions regarding the geometry of the porous space
are avoided, as mentioned above. In fact, invasion of wetting ¯uid in imbibition and wetting
¯uid retention in the later stages of drainage occur spatially through a complex structure of
corners and intrinsic irregularities of pore surfaces that are very di�cult to model by using
percolation networks of sites and bonds.
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2. Geometrical problem

Consider a system, U, composed by a rigid porous sample, M � U (Fig. 1). Let L be the free
region between the porous sample and the walls T of system U, L � UÿM [ T. It is supposed
that L is large enough as compared with porous cavities to ensure that this region is not the
site of any important capillary process. In this manner, L is de®ned as a geometrical region
whose boundary has a curvature radius rL41. M is the union of the solid matrix, S, and the
porous space P, M � S [ P. It is supposed that both M and S remain invariant during any
process. The constancy of M and S assures, respectively, that the porous body is
macroscopically and microscopically rigid. Let F be the region in U which can be occupied by
one or more ¯uids, i.e., F � Uÿ T [ S.
Consider an invasion process where a ¯uid B displaces a ¯uid A inside the porous space. It

is supposed that the two ¯uids are immiscible and the present work is only concerned with
quasi-static processes. Let this process be considered as a sequence (i, i = 0,1, . . . , p ) of
elementary steps between equilibrium states. For each step i, Bi is the geometric region
occupied by ¯uid B and, for step 0, B0 is such that B0 \ P � f, i.e., the invader ¯uid is outside
the porous body at the beginning of the process. For each step i, Bi is a connected geometrical
region, while Ai is the union of several geometrical regions which became disconnected during

Fig. 1. Geometrical problem for ¯uid invasion into a porous structure M: solid (S ), porous, (P ) and free (L ),

regions are represented and, also, the wall (T ). The region of ¯uids is F=UÿT [ S. A semi-permeable membrane
(m ) is also represented in the ®gure for preventing bubbling in the free region (L ) in the course of the invasion
process.
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the invasion process. In fact,

Ai � Ai
0 �

[n�i�
k�1

Ai
k, �1�

where, in step i, Ai
0 is the geometrical partition of A which remains connected to the free

region L during the invasion process and Ai
k, k = 1, . . . , n(i ), is one of the n(i ) regions in F

which became disconnect from L due to trapping by ¯uid B.
The trapped domain Y at step i is formally de®ned as

Y i � Ai ÿ Ai
0 1RiRp: �2�

At step i of invasion, let Ei
x be a ball of radius ri, centred at x, for a given point x belonging to

region F, i.e., the union of the porous region, P, and the free region, L. Radius ri is determined
from the well known Young±Laplace equation, which establishes the equilibrium condition at
the interface between ¯uids A and B,

ri �
������dÿ 1�sAB
PAi

0
ÿ PBi

�����, �3�

where d is the Euclidian dimension of the space, sAB is the interfacial tension between ¯uids A
and B, PAi

o
is the pressure at the domain of ¯uid A which is connected to the free region L,

and PBi is the pressure of ¯uid B, at step i.
For points x that are closer than ri from the boundary of F, the ball Ei

x will intercept this
boundary. For this reason a new ball E�ix is de®ned such that,

E�ix �
�
Ei
x if dxrri

f if dx < ri
, �4�

where dx is the smallest of the distances between point x and the boundary of F.
An opening region H is de®ned such that at step i,

H i �
[
x

E�ix x 2 F: �5�

Here, H i is a region whose interface has one of its two curvature radius constant and given by
ri. As it is the union of spherical balls enclosed in F, this interface makes a contact angle of 08
with the solid boundaries, de®ned with respect to the wetting phase.
For simulation purposes, the free region L is constructed with a boundary having a ®nite

curvature radius. In this manner, a new opening region is de®ned as,

G i � L [H i: �6�
It is important to de®ne a complementary region of G i, to ®nd the phase distribution in the
porous phase at step i, as

Gi � Fÿ G i: �7�
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Fig. 2 represents the above de®ned regions for a two-dimensional (2D) porous body with a
single cavity.
Let J and Q be any two regions of F and let K(J, Q ) be a union operator de®ned as the

union of the connected components Jj of J with a non-null intersection with Q,

K�J,Q� �
[n�J�
k�1

�
Jj if Jj \Q 6�b
b if Jj \Q �b

, �8�

evidently,

K�K�J,Q�,Q� � K�J,Q�: �9�
To illustrate the method Figs. 3 and 4 show an invasion process by, respectively, a wetting and
a non-wetting ¯uid B, into a single 2D pore cavity, composed by two rectangular ducts P1 and
P2 with di�erent radii and arranged to show the e�ect of trapping. A membrane is placed at
the wetting ¯uid side to maintain the pressure di�erence between the two phases and to
prevent bubbling into the wetting ¯uid.
At the beginning of the wetting ¯uid invasion process, Fig. 3, consider that pressure

di�erence PA ÿ PB is high enough to prevent wetting ¯uid invasion into the porous structure.
Invasion will start when this pressure di�erence is decreased until Eq. (3) is satis®ed for ri

equal to duct P2 half-width. This ®rst step is presented in Fig. 3(b), which shows the
geometrical region inside the porous cavity where wetting ¯uid is considered to be, at this step.
To predict this geometrical con®guration at any given pressure step, present method starts by
constructing the opening region G i and its complementary region Gi, using Eqs. (6) and (7),

Fig. 2. The opening operation performed with a ball Ei
x splits region F into a convex region Gi and a

complementary concave region Gi.
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Fig. 3. Invasion of a sample pore cavity by a wetting ¯uid B. A semi-permeable membrane, shown schematically at
(a). The equilibrium con®guration B 1 is shown in (b) without the separation membrane. The opening region G 1 is
shown with its complementary region G1 in (c), for a given radius r1, corresponding to a ®rst step of the invasion
process. In (d) it is shown the union of the elements of G 1 having a non-null intersection with B 0, i.e., K�G 1,B 0�.
Set O1 � Kf�K�G 1,B 0� [ G1�,B 0g is shown in (e). Encircled regions are isolated from the invading ¯uid and are
eliminated with the application of the K operator. Regions O2 and O2 \ Y 1 at a second pressure step are shown in
(f), when ¯uid A is considered to be incompressible.
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with a ball radius given by Eq. (3). Fig. 3(c) presents these two regions, at step 1. Fig. 3(d)
shows the result of the application of the union operator K de®ned in Eq. (8) to the connected
components of G 1 with a non-null intersection with B0, K�G 1,B0�, shown in Fig. 3(c). In this
sample case G is composed by three components: chamber A, almost the whole duct P1 and

Fig. 4. Invasion of a sample pore cavity by a non wetting ¯uid B. A semi-permeable membrane is shown
schematically in (a). Region B 0 is shown in (b) without the separation membrane. The opening region G 1 is shown

with its complementary region G1 in (c), for a given radius r1, corresponding to a ®rst step of the invasion process.
In (d) it is shown the union of the elements of G 1 having a non-null intersection with B 0, i.e., K�G 1,B 0� which is
set O1 when B is a non-wetting ¯uid. The invaded region B 1 after the ®rst step is shown in (e). In this sample case

B 1 � O1 as there is no trapping.
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chamber B. In this manner K�G 1,B0� is simply B0. To ®nd the region occupied by ¯uid B at
step 1, K�G 1,B0� [ G1 is calculated (Fig. 3(f)). Nevertheless, this union operation brings
together components which are isolated from B0, shown in Fig. 3(e) as encircled regions. To
eliminate these components the union operator K is applied a second time giving O1 �
Kf�K�G 1,B0� [ G1�,B0g: this results in the geometrical region ®lled by ¯uid B at step 1 and
shown in Fig. 3(b). To proceed with the simulation the isothermal compressibility kT of ¯uid A
(and/or B ) must be known. In present paper, ¯uids are considered either to be ideally
compressible �kT41� or to be ideally incompressible �kT � 0�. If ¯uid A is ideally
compressible, invasion into duct P1 will proceed and can be simulated in the same manner as
above: in present sample case a pressure reduction in PA ÿ PB will increase the interface
curvature radius until the pressure di�erence satis®es Eq. (3) for ri equal to duct P1 half-width,
when this duct will be fully occupied by ¯uid B. If ¯uid A is ideally incompressible, the
geometrical con®guration of the trapped regions, such as Y 1 � A1

1 in Fig. 3(b), will remain
unchanged during the remaining part of the invasion process. Considering a further step 2, the
union operator K will produce the region O2 shown in Fig. 3(f), which includes a part of the
trapped region Y 1, equal to O2 \ Y 1. To ®nd the geometrical region ®lled by ¯uid B2 at step
2, region O2 \ Y 1 must be subtracted from O2. Using MÿN � fx 2 U;x 2M and x=2N g, for
any two sets M and N, region B2 can be found by calculating O2 ÿ O2 \ Y 1 (or, which is the
same: O2 ÿ Y 1, since B2 must exclude any component of the trapped region Y 1). Although not
shown in the sample invasion process of Fig. 3, it must be observed that to ®nd region Bi, at
step i, it is necessary to subtract Y i, rather than Y iÿ1, from Oi, to, also, exclude the ¯uid which
has invaded dead ends of the porous structure, in the steps i ÿ 1 to i. This is necessary since the
presence of an ideally non-compressible ¯uid, ®lling a dead end and blocked by the wetting
¯uid, will prevent further invasion into this geometrical region. Region A2 is then calculated
from B2, using A2 � Fÿ B2, and the method follows, recursively, for the next pressure steps.
Fig. 4 illustrates an invasion process by a non-wetting ¯uid in the same 2D porous cavity, as

in Fig. 3. At the beginning of the process, pressures PA and PB are equal. Non-wetting ¯uid
invasion is produced by increasing PB with respect to PA and a ®rst step is shown in Fig. 4(e),
when ¯uid B has invaded a part of the porous cavity. Simulation is performed by decreasing ri,
in accordance with Eq. (3), when PB ÿ PA is increased. For a given pressure step i, the opening
region G i and its complementary Gi are calculated in, exactly the same way as above. This is
shown in Fig. 4(c) for step 1. For non-wetting invasion, region O1 can be calculated directly
from the union operator K�G 1,B0� as shown in Fig. 4(d), which is, in this sample case, the
geometrical region B1 which is to be predicted at this step.
For each step i, the above exposed procedures can be generalised. For a set Q, de®ning aQ

to be Q when a = 1 and to be the null set b when a = 0, the geometrical region occupied by
¯uid B can be determined using the following equation:

Bi � Oi ÿ uAY
i, �10�

where

Oi � K
��
�WB�Gi [ K

ÿ
G i,B0

��
,B0

	
, �11�

and WB is a wetting factor for ¯uid B (WB � 1, when ¯uid B is the wetting ¯uid and WB � 0
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otherwise), uA is a compressibility factor for ¯uid A (uA � 0 for ¯uids which are ideally
compressible and uA � 1, for ¯uids which are ideally incompressible). When ¯uid A is
incompressible, domain B at step i is, thus, dependent, on the trapped domain Y i, which is not
known at this step. In present work, domain Y i is approximated by the geometrical region that
is trapped at step i ÿ 1, Y i1Y iÿ1 � Aiÿ1 ÿ Aiÿ1

0 . The degree of approximation will be,
therefore, dependent on the step extent between two consecutive equilibrium states. In a 3D
discrete representation of the porous microstructure, this means, by Eq. (3), that reliability of
present simulation model, will be dependent on voxel linear dimension.
The above exposed method is, also, approximated in the sense that, in 3D the external

surface associated with the union of balls with a given radius r does not have a curvature
radius equal to r/2 (see Eq. (3)). This radius is not constant, depending on the porous surface
curvature. In consequence, the predicted interface does not, rigorously, obey the Young±
Laplace equation. Nevertheless, this deviation is expected to be small, excepting in the cavities
where the porous surface has curvature radii with a very large aspect ratio. Considering, e.g.,
the question of determining the true location of the interface for wetting ¯uid invasion through
the corners of a prismatic shape cavity with a rectangular cross section, the proposed model
would predict an interface closer to the corner. Another source of deviation is related to the
contact angle, exposed below.

2.1. Contact angle

Let yAB be the contact angle de®ned, as usually, with respect to the wetting ¯uid. As
invasion is quasi-static it is supposed that yAB remains constant during the invasion process.
The proposed solution given by Eqs. (10) and (11) results in equilibrium con®gurations whose
interface has a 08 contact angle.
For preserving the contact angle yAB, the ball E�xi de®ned in Eq. (4) could be written such

that

E�xi �
�
Ei
x if dxrri cos yAB

b if dx < ri cos yAB
: �12�

As it is shown in Fig. 5 it is however necessary, in this case, to consider in each ball E�ix , the
region of the ball contained in region F. This can be done by neglecting the points which
belongs to E�ix \ S. This procedure is, however, processing time expensive. It is, also, very
di�cult to solve some computational problems associated with this procedure, as illustrated in
Fig. 6. In this ®gure it is simulated an invasion process by a non-wetting ¯uid in a geometrical
restriction between three spheres of di�erent diameter. At step i, for a given pressure pi of the
non-wetting ¯uid it is associated a ball radius ri. Fig. 6(a) shows where would be the interface
of the non-wetting ¯uid, as calculated using Eq. (12), while Fig. 6(b) shows the correct
interface. In fact, a non-wetting ¯uid is not able to penetrate through the restrictions shown in
the ®gure, when the capillary pressure has a value related to ri, although it is not, apparently,
possible from a computational point of view to prevent solutions like the one shown in Fig.
6(a), using Eq. (12). In Fig. 6(c) it is shown the zero contact angle approximation for the
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Fig. 6. Invasion process by a non-wetting ¯uid in a geometrical restriction between three spheres of di�erent
diameter. In (a) it is shown where would be the interface of the non-wetting ¯uid, as calculated when using Eq. (12),
while in (b), it is seen the correct interface. In (c) it is shown the zero contact angle approximation for the interface.

Fig. 5. In¯uence of contact angle
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interface, used in the present work, at step j. Invasion inside the restrictions will only occur at
a farther step j corresponding to a lower ball radius r j.
To take account of this e�ect, the ball radius ri at each pressure step Dpi is calculated in

present zero contact angle approximation as in Eq. (3). In Fig. 6 the ball radius r j will thus
correspond to a non-wetting ¯uid pressure Dp j corrected by cos yAB. As it is shown in the
above example, this is, apparently, a better approximation as compared with the use of Eq.
(12) and has been adopted in the present work.

3. Simulation procedure

Computational procedure starts from a 3D phase function Z(r) whose domain is a cube,
representing the system to be analysed, including the porous material and the chambers where
the wetting and non-wetting ¯uid are to be placed, for simulation purposes. Z�r� � 0 if r 2
S [ T and Z�r� � 1 if r 2 F. In the ®rst step, the distance dx, de®ned in Eq. (4) is determined
for each r 2 F. Distance dx is the smallest of the distances from point r 2 F to the boundary
between region F and solid phases and will be, in the following text, called background
distance (BD).
For a 3D system, r is a discrete variable and each r is associated to a given 3D cell in space.

Using an Euclidean metric, and considering the distance between the centres of two adjacent
cells as unitary, the distance between two adjacent cells with a common edge will be Z2 and
Z3 when they have a common corner.
When three arbitrary cells a, b and c have their centres sequentially aligned and when the

distances between cells, a and b, to a given cell 0 are known, it is easy to show that the
squared distance between cells c and 0 can be written in terms of the ®rst two, as:

d2c0 � 2d2b0 ÿ d2a0 � 2d2ab: �13�
To ®nd the squared distance of each cell to the background (SBD), a corner is chosen as the
starting point, and the cells of the ®rst plane, z � 0, are labelled. In the next z planes, distance
is calculated using Eq. (13). The procedure is sequential, following the 0±x, 0±y and 0±z
directions, sequentially. Cells in the solid phase are labelled with 0, and the ®rst cells in phase
F, with a face, an edge or a corner adjacent to the solid phase are labelled with 1, 2 or 3,
respectively. Squared distances can be stored in a ordinary computer as integers, using a 2
bytes address, instead of 4 bytes, necessary for real variables.
Matrix SBD (x, y, z ) is important to ®nd the several geometrical regions de®ned in Section

2. In this way, the opening region H i, de®ned in Eq. (5), is obtained at step i, by placing a ball
of radius ri centred at each cell with a SDB, satisfying

�ri�2< SDBR
ÿ
ri � 1

�2
, �14�

and by considering all cells with SBDr�ri � 1�2 as belonging to H i. In fact, balls with radius ri

centred on cells with SBDR�ri �2 intercept the boundary of phase F and cells with SBDr�ri �
1�2 are always surrounded by cells with SBDr�ri �2. Region G i as its complement Gi can be
then determined by using Eqs. (6) and (7).
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4. Results

The above procedure was used to simulate mercury intrusion and wetting/non-wetting ¯uid
invasion into a 3D reconstructed porous structure.

4.1. Three-dimensional geometrical reconstruction

Several methods exist to generate discrete random ®elds. Adler et al. (1990) and Fernandes
(1994) generated isotropic media by a simpli®ed version of an algorithm presented by Quiblier
(1984) for general 3D porous media based on the truncated gaussian method. This algorithm
was itself an extension of a 2D scheme devised by Joshi (1974). Here it is used the truncated
gaussian method by applying Fourier transform, as proposed by Liang et al. (1998).
The method consists in generating a random function Z(x) that is equal to zero in the solid

phase and one in the pore phase and which verify the two average properties. Porosity is a
given positive number smaller than 1. Normalised auto-covariance function Rz�u� is a given
function of u that veri®es the general properties of a correlation function for the phase
function Z(x) but is, otherwise, arbitrary. The analysis is restricted to homogeneous media,
where the statistical characteristics are assumed to be independent of position x in space. Due
to homogeneity, porosity is a constant and Rz�u� depends only on the vector u. Moreover,
when the porous medium is isotropic, Rz is a function only of u � juj, and does not depend on
the direction of u, i.e., Rz�u� � Rz�u�.
A random and discrete ®eld Z(x) can be devised from an independent gaussian ®eld X(x)

when the latter is successively passed through a linear and a non-linear ®lter. The random
variable X(x) are assumed to be normally distributed with a mean equal to zero and a variance
equal to one. The variables are non-correlated. A linear operator can be de®ned by an array of
coe�cients a(u), where u belongs to a ®nite cube �0, Lc�3 in Z 3. Outside this cube, a(u) is equal
to zero. A new random ®eld Y(x) can be expressed as a linear combination of the random
variable X(x). The di�culty related to the above linear ®lter is to get a(u) by solving a non-
linear system of equations. Adler (1992) proposed a version using Fourier transform. From a
computational point of view, the use of fast Fourier transform algorithm, instead of laborious
solution of non-linear equations, makes Fourier transform method superior to the above
method. Application of Fourier transform is, however, restricted by resident memory
requirements. To overcome those problems, an existence theorem, Papoulis (1965), provides an
alternative method for generating normal ®elds. Given a positive-de®nite function RY�u�, it is
possible to ®nd a stochastic process Y(x) having RY�u� as its normalised auto-covariance
function. By de®nition of Fourier transform and the Wiener±Khinchin theorem, the Fourier
transform of the correlation function of a ®eld is also its power spectrum. Therefore, if the
correlation function of an arbitrary ®eld is known, one can use Fourier transform to generate
this ®eld Y(x) with the same auto-covariance function (Pardo-IguÂ zquiza and Chica-Olmo,
1993). The di�erence between this method and previous ones is that Y(x) is directly generated
from its auto-correlation function C(u), and does not need the linear ®lter transform
X�x�4Y�x�. In addition, when compared with Adler's method (Adler, 1992), Liang et al.'s
(1998) method reduces the resident memory requirements, because the independent gaussian
®eld data X(x) are not needed. These relations can be shown in Fig. 7. In this way, one ®rst
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generates the Gauss ®eld Y(x) directly from its auto-covariance function, then use the
truncated method to generate Z(x).
Fig. 8 shows a binary representation of a polished thin section of the sample material, a

Berea sandstone with a nominal permeability of 500 mD. Pores are shown in black and solid

Fig. 8. Binary image of a polished thin section of a 500 mD Berea sandstone.

Fig. 7. Basic relations among stochastic process, correlation function, power spectrum and Fourier spectrum.
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matrix in white. Each pixel corresponds to a square section of 2.6 mm2 and the complete image
has 609 � 458 pixels.
Three-dimensional reconstruction needs information about porosity e and auto-correlation

function C(u). Considering isotropic sections, auto-correlation function is, usually, calculated
along a given direction by displacing the binary representation over itself in the x direction (or
y ), using multiples of the pixel dimension and measuring the void fraction related to the
intersection, i.e., the frequency of outcomes corresponding to two superposed black pixels
(Adler, 1992; Philippi et al. 1994). Due to the ®nite size of this discrete binary representation
with respect to pixel dimension, this above described procedure produces, generally,
¯uctuations on auto-correlation function. Since auto-correlation function C(u ) is related to the
probability of ®nding two points separated by u and belonging to the same phase, it is
advantageous to calculate C(u) as a function of the 2D vector u � �x,y� and, then, to take its
mean value around a circle with radius u � juj. This last procedure produces more reliable
C(u ) values since it increases the number of realisations needed to calculate this probability.
The utilisation of presently well known and largely di�used fast algorithms, makes Fourier

transform a very suitable tool to calculate C(u), as a function of the displacement vector
u � �x,y�. Using Wiener±Khinchin theorem, normalised auto-covariance function RZ�u� was
measured by calculating the power spectrum of the phase function Z(x), i.e.,

RZ�u� � Jÿ1
���Ẑ�p����2, �15�

where Ẑ�p� implies the direct Fourier transform of Z(u) and Jÿ1 is used to indicate the
corresponding inverse operation. Taking the mean value of RZ for the several u with the same
norm produces RZ�u�, used in the present work to 3D geometrical reconstruction of the porous
structure.
Fig. 9 shows a comparison between the above described methods for calculating the auto-

correlation function C(u ) for the sample image, Fig. 8.
Fig. 10 shows a 3D view of the reconstructed microstructure for a given realisation.
Fig. 11(a) shows a comparison for the cumulative porous volume fraction measured on the

original binary image and on several 2D cross sections of the reconstructed microstructure.
These curves were obtained by measuring the cumulative area fraction on several 2D serial
cross sections sliced from the reconstructed 3D representation and by taking the average values
between these sections, for a given pore radius. Opening operation from image analysis was
used in this computation step (Chassery and Montanvert, 1991). Factor n is a sampling factor
taken over RZ�u� data: sampling factor n means that the only points considered for RZ�u� data
were the ones separated by n ÿ 1 pixels. Reconstruction was performed trying to preserve the
3D representation linear size, in microns and taking computer resident memory limitations into
account. In fact, resident memory requirements increase by a factor 23 when sampling factor n
is halved, for the same linear size in microns. Factor N gives the linear size, in voxel, for each
curve. In this manner, the linear size of all reconstructed cubes is 1040 mm, excepting curves
n � 6,N � 100,n � 2,N � 150 and n � 1,N � 200, with linear sizes 1560, 780 and 520 mm,
respectively. Letters a, b, . . . indicate stochastic simulations performed with di�erent random
seeds. It is apparent from Fig. 11(a) that, in the present case, a linear size of 1040 mm for the
3D stochastically generated representations is largely enough to avoid random seed e�ects.
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Results also show that, when sampling factor n is reduced, 3D reconstruction gives a
systematic deviation with a larger amount of small-size pores when compared to the original
binary image. The better agreement was obtained for n � 6 and n � 4. This is clearly seen in
Fig. 11(b) which gives the pore size distribution, obtained as derivatives from the previous
distribution curves. Although, due to computer storage limitations, it was not possible to
generate re®ned 3D representations, with n � 1 and with the same linear size as the larger n
ones, this systematic deviation is possible to be attributed to the reconstruction method itself,
which appears to fail, when trying to preserve the size distribution of the smaller features
found in the original 2D binary image. In fact, it must be remembered that present
reconstruction method is based on: (i) the hypothesis that the original target 2D representation,
Fig. 8, is a realization of a stochastic process which is considered to be ergodic and stationary
and (ii) the hypothesis that this process is Gaussian and can be, inherently, described by its
only ®rst two moments.

4.2. Mercury intrusion

Mercury intrusion was simulated in 3D reconstructed porous structures of Berea sandstone.
In a ®rst system, intrusion was supposed to proceed through a single external surface of.a cube

Fig. 9. A comparison between di�erent methods for calculating the auto-correlation function C(u ) for the sample
image, Fig. 8.
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with size N3 voxel. In a second system, intrusion was supposed to proceed through all the six
external surfaces of the cube. For cubes with small sizes, surface e�ects due to mercury
accommodation at the external boundary pores were more pronounced in system 2, although
percolation was delayed in system 1. Considering that 3D reconstruction becomes, rapidly,
hard to perform as the linear size N increases, due to the N3 growing of computer resident
memory requirements, results for larger samples, apparently indicate that both systems
converge to the same results when the linear size is increased. Fig. 12 shows a set of previous
results for the simulation of mercury intrusion: a comparison is performed between systems 1
and 2 for reconstructed cubes with sizes 1003 and 1503, respectively, using a sampling factor
n � 2. In this ®gure ab Sg indicates that simulation was performed on a b3 voxel cube
reconstructed with a random seed a, using system g. In view of these previous results, system 1
was chosen for simulating purposes.
Fig. 13 shows a comparison between experimental values and system 1 simulation for

mercury intrusion. Several reconstructed microstructures were used. Curves S_60N4T100,

Fig. 10. Three dimensional view of the reconstructed microstructure of a 500 mD berea sandstone.
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S_80N4T100, S_100N4T100 represent the results of simulations on cubes with sizes 603, 803

and 1003 voxel, respectively. All these cubes are pieces cut from a reconstructed microstructure
with size 1003 voxel, using a sampling factor n � 4. Curves S_150N2T150a and S_150N2T150b
represent the results of simulation on 1503 voxel cubes taken from two 3D representation
reconstructed with 1503 voxel, using a sampling factor n � 2 and di�erent random seeds.
Curves S_200N2T200a and S_200N2T200b represent the result of simulation on a 2003 voxel
3D representation reconstructed with 2003 voxel, using a sampling factor n � 2.

Fig. 11. (a) Comparison for the cumulative distribution of pore volume fraction between the values measured on the
original binary image and the mean value obtained by measuring on several 2D cross sections of the reconstructed

microstructure, (b) Pore size distribution obtained as derivatives of the cumulative volume fraction
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Measured values of intrusion pressures were converted to ball radius using Eq. (3), corrected
by the cosine of the contact angle. Experimental values proceed from mercury intrusion
experiments performed with large samples to avoid surface e�ects.
It is apparent from Fig. 13 that: (i) random seed in reconstructing the 3D representation has

a very little in¯uence on mercury intrusion simulation for linear sizes about 780 mm and above;
(ii) although there is a good agreement between simulation and experimental results for 3D
representations, with a sampling factor n � 4, percolation is retarded when simulation is
performed on more detailed 3D representations, with n � 2. The above results and Fig. 11
indicate that retarded percolation on more detailed 3D representations is to be attributed to
the larger amount of small-size pores obtained in 3D reconstruction when the sampling factor
is reduced. These pores are distributed on the whole 3D porous structure representation, acting
as constrictions and retarding mercury percolation.

4.3. Simulation of imbibition and drainage

Imbibition was simulated into a simple porous structure composed by some few identical
solid spheres, randomly disposed inside a cubic shaped chamber. Results for two invasion steps
are shown in Fig. 14. At each pressure step, porous structure was sliced in several parallel
serial sections and Fig. 14 shows the geometrical con®guration of the wetting (represented in
blue colour) and non-wetting phases (in dark grey) corresponding to the ®rst ®ve serial
sections, at that step. The ®rst section represents the solid wall of the chamber and, the next

Fig. 12. A set of previous results for the simulation of mercury intrusion: a comparison is performed between
systems 1 and 2 for reconstructed cubes with sizes 1003 and 1503, respectively, using a sampling factor n � 2;ab Sg
indicates that simulation was performed on a b3 voxel cube reconstructed with a random seed a, using system g
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ones, the pore structure between the solid spheres. It is clearly seen that, by increasing capillary
pressure, invasion of the wetting ¯uid is adequately modelled, proceeding through the corners
and smaller pores of the porous structure, as in regions 1 and 3, and producing blockage of the
non-wetting ¯uid (represented in light grey as in region 2). These e�ects are very important in
wetting-¯uid invasion and entirely justi®ed from a physical point of view. They cannot be
predicted by, e.g., percolation networks, although several attempts have been made in the last
few years for taking account of edge invasion, by the use of networks with square cross
sections bonds, connecting cubic sites (Ioannidis and Chatzis, 1993c). In fact, the extreme
irregularity of the porous surface produces a very complex network of 3D bonds for wetting-
¯uid invasion, which is very di�cult to model by using percolation networks. In the present
conception, corner invasion is an intrinsic consequence of the method used to predict the
geometrical regions occupied by the wetting and non-wetting phases, inside the pore space.
Corner invasion results in non-wetting ¯uid blockage, which can be fully appreciated in region
5, in the ®gure. In region 4, the centre of curvature of ¯uid interface is apparently inside the
wetting ¯uid region. However, it must be observed that the interface is 3D and spatial
composition of the several serial sections results in an interface with a centre of curvature
inside the non-wetting phase.

Fig. 13. Comparison between experimental values and system 1 simulation for mercury intrusion. S aNbTgd
indicates that simulation was performed on a a3 voxel cube obtained from a g3 voxel reconstructed cube using a
sampling factor n � b and random seed d.
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Fig. 15 shows simulation results representing wetting ¯uid invasion into a Berea sandstone
3D reconstructed porous structure with 1503 voxel and sampling factor n � 2. Curves A, B and
C represents simulation for three di�erent reconstructed cubes using di�erent random
generator seeds. Wetting and non-wetting ¯uids were considered as ideally non-compressible.
Imbibition starts from point I1. For this point, interface between wetting and non-wetting
¯uids was found using a unitary radius ball (in voxel). Using Eq. (3) this radius can be
converted to the smallest capillary pressure which was possible to predict in an imbibition
process, starting from the original image resolution and considering the sampling factor n used
in reconstructing the microstructure. At point I1 saturation was calculated as about 0.005.
Points I2 were obtained with the next ball radius, corresponding to two voxel. As non-wetting
¯uid was considered to be non-compressible, wetting ¯uid invasion stops at I3 from which a

Fig. 14. Simulation of imbibition into a a simple porous structure composed by some few identical solid spheres,
randomly disposed inside a cubic shaped chamber
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later increase in capillary pressure produces no increase in wetting ¯uid saturation. In fact,
from that point on the remaining non-wetting phase is completely blocked inside the porous
space. The total amount of trapped non-wetting ¯uid was calculated as near 55% of the total
porous volume, at this point. The small deviations presented at points I3, where wetting ¯uid
saturation appears to diminish as capillary pressure increases, have no physical meaning and
are to be considered as a de®ciency of the method. Actually, this e�ect is very common in
discrete morphology, where the objects to be analysed are sets of discrete points. As the
wetting ¯uid region is considered to be the complementary set of the union of balls with a
given radius and possible to be located inside the porous space, an increase in ball radius may
produce a more complete ®lling of the porous space by this union of balls, reducing the
amount available to the wetting ¯uid. This e�ect is more pronounced for reconstructed
microstructure B.
Fig. 16 shows simulation results for drainage and comparison with experimental data for

water and oil as, respectively, the wetting and non-wetting ¯uids. Simulation was performed
using 1003 voxel reconstructed microstructures of 500 mD Berea sandstone, with a sampling
factor n � 1. Measured values, found in the literature and nearest to the simulated sandstone,
were related to a 600 mD Berea and taken from Ioannids and Chatzis (1993c). Considering the
lack of data for contact angle and interfacial tension related to the particular pair water±oil
used in the experiments, curves were constructed using a reduced capillary pressure. Reduced
capillary pressure is de®ned as P�c � Pc=Pc,th, where Pc,th is the value of capillary pressure at
threshold. Irreducible water saturation was found as 0.24, at the end of drainage. Evidently,
the amount of trapped water at the end of drainage, found in simulations, is dependent on the

Fig. 15. Simulation of imbibition into a 1503 3D reconstructed microstructure of a 500 mD Berea sandstone using a
sampling factor n � 2. A, B, C correspond to three di�erent random generator seeds.
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®nal resolution and geometrical accuracy obtained for the original binary image used to
reconstruct the porous microstructure. This must consider sample surface planarity, image
acquisition process and software tools used for image segmentation and morphological ®lters.
Nevertheless, simulation compares well with the experimental data at our disposal and
restricted to P�c smaller than 5. Simulation for reduced capillary pressures greater than 5 would
require image acquisition with a resolution higher than the presently used 1 pixel/2.6 mm2.
It is interesting to compare the total amounts of displaced ¯uid at the end of imbibition and

at the end of drainage, respectively, 45 and 76% of the porous volume. In the present work,
this important di�erence is attributed to wetting ¯uid invasion by the corners and porous
surface irregularities, in imbibition, as opposed to non-wetting ¯uid invasion in drainage,
proceeding, mainly, by piston displacement along the inner axis of the porous space.

5. Conclusions

In present paper, a methodology was presented for studying two-phase equilibrium inside a
porous medium, based on Young±Laplace's equation that predicts a constant curvature for the
interface between two-phases in mechanical equilibrium. The great advantage of the presently
proposed methodology with respect to percolation networks conception is that simplifying
assumptions regarding the geometry of the porous space are avoided. The method is applied
on 3D reconstructed porous structures.
Simulation of mercury intrusion and water±oil capillary curves are presented for Berea

sandstone and compared with experimental data. Corner invasion and retention of wetting

Fig. 16. Simulation of drainage for a 1003 reconstructed microstructure of Berea sandstone, using a sampling factor
n � 1 and comparison with experimental data.
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¯uid during the later stages of drainage are, apparently, adequately modelled, especially when
compared with percolation networks models. Considering the limitations of the methodology,
results, apparently, con®rm its adequacy as a valuable tool for simulating two-phase
equilibrium in porous media.
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